Neural Network Based Solution to Inverse Problems
نویسندگان
چکیده
The weILposedr7ess of the problems is not always guaranteed in inverse problems, unlike the forward problems. Dnts, a number of methods for giving wellposedrjess hm?e been studied in mathematical fields. In the ,field qf neural! networks, the network inversion method. for solving inverse problems was proposed; it is useflll but does not dissolute the ill-posedness of inverse problems. To overcome the difficulty, we propose the answer-in-weights scheme to prollide the network with a priori given knowledge. In this paper, we compared the perfor&ance of answer-in-weights network with the one qf inversion network in solving the ill-posed inverse problem arising in the Fredholm integral equation of the first kind. Furthermore, we compared the express&n of the a priori knowledge inherent to the problem, by using two kinds of models.
منابع مشابه
Application of Wavelet Neural Network in Forward Kinematics Solution of 6-RSU Co-axial Parallel Mechanism Based on Final Prediction Error
Application of artificial neural network (ANN) in forward kinematic solution (FKS) of a novel co-axial parallel mechanism with six degrees of freedom (6-DOF) is addressed in Current work. The mechanism is known as six revolute-spherical-universal (RSU) and constructed by 6-RSU co-axial kinematic chains in parallel form. First, applying geometrical analysis and vectorial principles the kinematic...
متن کاملInverse Identification of Circular Cavity in a 2D Object via Boundary Temperature Measurements Using Artificial Neural Network
In geometric inverse problems, it is assumed that some parts of domain boundaries are not accessible and geometric shape and dimensions of these parts cannot be measured directly. The aim of inverse geometry problems is to approximate the unknown boundary shape by conducting some experimental measurements on accessible surfaces. In the present paper, the artificial neural network is used to sol...
متن کاملA Neural Network Method Based on Mittag-Leffler Function for Solving a Class of Fractional Optimal Control Problems
In this paper, a computational intelligence method is used for the solution of fractional optimal control problems (FOCP)'s with equality and inequality constraints. According to the Ponteryagin minimum principle (PMP) for FOCP with fractional derivative in the Riemann- Liouville sense and by constructing a suitable error function, we define an unconstrained minimization problem. In the optimiz...
متن کاملA Neural Network Model to Solve DEA Problems
The paper deals with Data Envelopment Analysis (DEA) and Artificial Neural Network (ANN). We believe that solving for the DEA efficiency measure, simultaneously with neural network model, provides a promising rich approach to optimal solution. In this paper, a new neural network model is used to estimate the inefficiency of DMUs in large datasets.
متن کاملAn Efficient Neurodynamic Scheme for Solving a Class of Nonconvex Nonlinear Optimization Problems
By p-power (or partial p-power) transformation, the Lagrangian function in nonconvex optimization problem becomes locally convex. In this paper, we present a neural network based on an NCP function for solving the nonconvex optimization problem. An important feature of this neural network is the one-to-one correspondence between its equilibria and KKT points of the nonconvex optimizatio...
متن کاملESTIMATION OF INVERSE DYNAMIC BEHAVIOR OF MR DAMPERS USING ARTIFICIAL AND FUZZY-BASED NEURAL NETWORKS
In this paper the performance of Artificial Neural Networks (ANNs) and Adaptive Neuro- Fuzzy Inference Systems (ANFIS) in simulating the inverse dynamic behavior of Magneto- Rheological (MR) dampers is investigated. MR dampers are one of the most applicable methods in semi active control of seismic response of structures. Various mathematical models are introduced to simulate the dynamic behavi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998